A p-adic RANSAC algorithm for stereo vision using Hensel lifting
نویسندگان
چکیده
منابع مشابه
A p-adic RanSaC algorithm for stereo vision using Hensel lifting
A p-adic variation of the Ran(dom) Sa(mple) C(onsensus) method for solving the relative pose problem in stereo vision is developped. From two 2-adically encoded images a random sample of five pairs of corresponding points is taken, and the equations for the essential matrix are solved by lifting solutions modulo 2 to the 2-adic integers. A recently devised p-adic hierarchical classification alg...
متن کاملp-adic Methods in Stereo Vision
The so-called essential matrix relates corresponding points of two images from the same scene in 3D, and allows to solve the relative pose problem for the two cameras up to a global scaling factor, if the camera calibrations are known. We will discuss how Hensel’s lemma from number theory can be used to find geometric approximations to solutions of the equations describing the essential matrix....
متن کاملResolving zero-divisors using Hensel lifting
Algorithms which compute modulo triangular sets must respect the presence of zero-divisors. We present Hensel lifting as a tool for dealing with them. We give an application: a modular algorithm for computing GCDs of univariate polynomials with coefficients modulo a radical triangular set overQ. Our modular algorithm naturally generalizes previous work from algebraic number theory. We have impl...
متن کاملNewton-Hensel Interpolation Lifting
The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in Z[x] from information modulo a prime number p 6= 2 to a power pk for any k , and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exac...
متن کاملUsing Sparse Interpolation in Hensel Lifting
The standard approach to factor a multivariate polynomial in Z[x1, x2, . . . , xn] is to factor a univariate image in Z[x1] then lift the factors of the image one variable at a time using Hensel lifting to recover the multivariate factors. At each step one must solve a multivariate polynomial Diophantine equation. For polynomials in many variables with many terms we find that solving these mult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: P-Adic Numbers, Ultrametric Analysis, and Applications
سال: 2010
ISSN: 2070-0466,2070-0474
DOI: 10.1134/s2070046610010048